Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI.
نویسندگان
چکیده
Dynamic susceptibility contrast MRI (DSC-MRI) is the current standard for the measurement of Cerebral Blood Flow (CBF) and Cerebral Blood Volume (CBV), but it is not suitable for the measurement of Extraction Flow (EF) and may not allow for absolute quantification. The objective of this study was to develop and evaluate a methodology to measure CBF, CBV, and EF from T1-weighted dynamic contrast-enhanced MRI (DCE-MRI). A two-compartment modeling approach was developed, which applies both to tissues with an intact and with a broken Blood-Brain-Barrier (BBB). The approach was evaluated using measurements in normal grey matter (GM) and white matter (WM) and in tumors of 15 patients. Accuracy and precision were estimated with simulations of normal brain tissue. All tumor and normal tissue curves were accurately fitted by the model. CBF (mL/100 mL/min) was 82 +/- 21 in GM and 23 +/- 14 in WM, CBV (mL/100 mL) was 2.6 +/- 0.8 in GM and 1.3 +/- 0.4 in WM. EF (mL/100 mL/min) was close to zero in GM (-0.009 +/- 0.05) and WM (-0.03 +/- 0.08). Simulations show an overlap between CBF values of WM and GM, which is eliminated when Contrast-to-Noise (CNR) is improved. The model provides a consistent description of tracer kinetics in all brain tissues, and an accurate assessment of perfusion and permeability in reference tissues. The measurement sequence requires optimization to improve CNR and the precision in the perfusion parameters. With this approach, DCE-MRI presents a promising alternative to DSC-MRI for quantitative bolus-tracking in the brain.
منابع مشابه
Feasibility of whole-brain dynamic contrast enhanced (DCE) MRI using 3D k-t PCA
INTRODUCTION: Quantification of cerebral blood flow using dynamic contrast enhanced (DCE) MRI [1] has several advantages over conventional dynamic susceptibility contrast (DSC) MRI [2]. Most importantly, DCE-MRI avoids the inherent susceptibility artifacts of DSC-MRI, thus allowing for more reliable measurement of the arterial input function (AIF) and quantification of blood brain barrier leaka...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملIntensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion
Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...
متن کاملبررسی اثر انسداد گذرای شریان مرکزی در کاهش آسیبهای مغزی در مدل سکتهی مغزی رت
Background and Objective: Recent studies suggest that sub-lethal ischemia protect the brain from subsequent ischemic injuries. This study was an effort to identify and shed light on the nature of changes in the blood brain barrier permeability and brain edema. Materials and Methods: Rats were divided into four main experimental groups, each of 21 animals. The first group acted as a model of isc...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2009